


Quantum Electrodynamics




Feynman Rules for QED (Interaction between fermions and photons)
To compute the amplitude , M, associated with a particular Feynman diagram (FD), we proceed as follows:

W~b(k,s)u(k,s)e ** + dt(k, s)v(k,s)ek
b, bT represent operators for annihilation of particle and creation of particle
d, dT represent operators for annihilation of antiparticle and creation of antiparticle
Logp = i¥]igy*]¥YA,










(IM]?) = Average of initial spin & sum over final states
« Initial spins being random, average over initial spins are taken

* In final states particles are detected in a particular direction, hence those are specified. Sum of final spins are

considered. \

IM|? =

(n; _ep3)4 [a)y*u)]|u(@)y,u)| [y’ u)] a4y, u2)]*

Let us simplify the product of either 15t and 3" square bracketed term or 2" and 4t ones.
Consider a general expression,

G = [u (a)Tyu(b)][u(a)lLu(b)]* ; a & b stand for spins and momenta I'; and I, are 4 X 4 matrices.

[E(@Tub)]* = [E@u®)]t = [ut(@y°Lu®)]'
= ut (D) ) Tu(a) = ut(B)yy°r)y'ule) = a(b)Lu(a)

Using (%2 =1 & (¥t =y° anddefiningT, = y° I/ y°
G = [u (@Tyu)][u(a)Tu(b)]*=[u (a)yu(b)][u(b) Lu(a)]
dsuu=(@p+m) ;Xsvv=(p—m) andp =py,



Ys, G = (@)1 (pp + mp)u(a) = u(a)Qu(a) defining Q = Iy (pr+ my)L

z z G = z u(a)Qu(a) = z u;(a)Q;ui(a) = Qy; z uj(a)u;(a) = Q;;(y + my) ji

Sa Sb Sa Sa

= Tr[Q(p, + ma)] = Tr[[1(pp + My (e + ma)]
Now,

(IM|?) = =—==Trly*(p; + M)y’ (g3 + M)] X Trly, (@, + M)y, (py + M)| ---------- (1)

)

\

m, M are mass of electron and muon respectively.

This is commonly known as Casimir’s Trick of simplification. Now Trace technology is needed to further
simplify the above expression.
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Spin average over initial spins , for spin ¥ particles .
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vEYY +yiyE = 20"
Iuwg"" =4
yﬂyu = 4-

Trace theorems/formulae needed for simplifications:

QLA W N N

Tr(AB) = Tr(BA)

Tr(ABC) = Tr(BCA) = Tr(CAB)

Tr(odd number of y matrices) = 0

Tr(1) =4

Tr(y®y”) = 4g™

T?"(}/”}/v}//l)/a) — 4_(guvgla _ gu/lgva + guagvl)



From Eq. (1) :
Trly* (e, + m)yY (ps + m)] = Tr(y#pyVes ) + m[Tr(y#py” ) + Tr(y#yVps)] + m*Tr(y#yY)
 Square bracketed term in the above expression vanishes due to Trace theorem 3.
Tr(y pv'p3 ) = ()2 @3)oTr(Y* v v*v?) = (02 (03)04(g"* g% — 9"’ g™ + g#7g™)
= 4(pi'p¥ — 9"V (p1 - p3) + PPy ) using Trace theorem 6
Trly*(p, + m)y¥ (ps + m)] = 4|pi'p¥ + pipY + g*'(m? — p, - p3)| using Trace theorem 5
Similarly,
Tr|y.(pz + M)y, (s + M)| = 4[pypY + pyp3 + g** (M? — p; - ps)]
Now, Eq. (1) becomes

(IM|?)y = - —2—

4 (pq p)4

= (p18;g;3)4 [((p1 - P2) (03 - D) + (01 - Da) (P2 - P3) — M2(py - p3) — M?(Py * Py) + 2MZM?] --------- (2)

16[pi'pY + pipY + g’ (m? — py - p3)| X [Py DY + D4 DY + g (M? — py - py)]




In Laboratory frame, assuming muon as target particle with infinitely heavy and electron as bombarding

article .
P @ (E3,p3)

[
»

(El; ﬁl) M
Target (Muon at Rest )

Target particle does not recoil and assume E; = E5 = E

Momentum assignment: p; = (E,p;); p, = (M,0); p3; = (E,p3) ; pa = (M,0)

3-momentum conservation gives : p; +0 = p3 +0 => |p;| = |p3| = p (Let)

(p1 —p3)? = (E — E)* — (B1 — P3)* = [I11* + 1551* — 21p111P3| cos 6] = —2p?(1 — cos 6) = —4p? sinzg

6
~ (p1 — p3)* = 16p* Sin4§



p1:-P2=EM ; p3-pys=EM; p-p,=EM ; p,-p3=EM

-

p-p3 = E* —py D3 = E? —p?cosO = p? + m? —p?cosh = m? + 2p? sin®—

P2 Dy = M?
Now substituting all these in Eq. (2) we get,

de 2 M2E2 2 9 2
(|M|? )—p Sm49[E p? sin? ]—p Sm4 [1 v? sin? ]usmgv—E

Plugging the above expression in differential scattering cross-section formula ,

() =5, = o) M) = g1 =2 sin2 ] e 3)

4p% sin 5

Where g, = V4na
In the non-relativistic limit, the result matches with the Rutherford formula,

a’E? a?

= ~ 5 assumingzZ =1

(&)
dQ/ Rutherford  4p* sin4§ 16E2 sin45



Eq. (3) shows that in the non-relativistic limit (v «< c) , the result does not depend on electron spin because it
agrees with the Rutherford result. It means that for v — 0, the effect of spin can not be stated. Why ???

The spin direction does not change in the scattering of non-relativistic electrons. This is due to the fact that
electrons interact dominantly via electric field which can not flip the spin direction. At higher energies it is the
magnetic field which flips the spins. Hence, only in the relativistic limit when v is large enough to be
compared with c , the spin flipping occurs due to magnetic field.

Electrons are used as good probes for revealing the substructure of protons. This is because of the fact that
electrons do not take part in strong interactions. By measuring the angular distribution of scattered electrons
from protons and comparing it with the cross-section for scattering electrons from a point charge we can
estimate the charge radius of protons.

4o — (E) ~ |F(@)|* ;where g = p; — py i.e., momentum transfer between the incident e and p
dQ  \dQ/point

« F(q) is the Fourier transform of the charge distribution. F(§) = [ p(¥)e'd* d3x
« Normalization condition: [ p(¥)d3x =1

« F(0) = 1 using the normalization condition
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O .5
Considering the recoil of muon the pictorial representation of e — u scattering in laboratory frame .
AssumeE, = E & E;=FE'
Neglecting the mass of electron in Eqg. (2) we get,

(IM|?) = (p18f§3)4 [(P1 - P2) (3 - Pa) + (01 - P4) (P2 - P3) — M?(p1 - P3)] - (4)

Ey =E~|pl| ;Es=E ~|psl ;pi =p5~0; q=p1—P3s=0s—D2
q?> = (p; —p3)? = —2p; - p3 = —2EE'(1 — cos0) = —4EE’ sinzg




2
(P1'Pz)=EM;(P3'P4)=P3'('P1—P3+P2)=P3‘P1—0+P3'P2=—%+E'M

2
(P2 p3) =E'M; (p1-ps) =D1° (P1 — D3 +p2)=0—p1-p3+p1-p2=+%+EM

4 q2 ’ ’ q2 MZqZ
mﬂ)_ s |[EM{—— +E'M |+ E'M| -+ EM | +—

_8 M(E —E")q*> M2q?
q* 2 2
_8 2 q2 (E—E
ge ZMZEE/ 1 q . q ( )
q AEE' 2M?2 2FEE'
8ge 2M?EE' |cos? Q - q—251n2 g
C[ 2 2M?2 2



oY (N My = (— ) E [ os2 @ 2 sin2 2 |
(59) 0y = (52) 412 = () E [e0s? S psin? ¢ o

Problem: Show that EE = ﬁ

1+ﬁ sin >

The above formula is very powerful for exploring the internal structure of a target in which the target is bombarded
with a beam of high-energy electrons and to observe the angular distribution and energy of the scattered electrons.
Such experiments have enormous impact on understanding the structure of matter. This technique will be used in
revealing the substructure of PROTON.

Electron-Proton scattering experiment is very useful in revealing the substructure of proton depending upon the
energy of the bombarding electron.

According to de’Broglie hypothesis 1 = \/% where m is mass of e and E is the energy of the bombarding e.

For probing smaller dimension one requires to increase the energy of the bombarding e.
* A >d, :Electron sees proton as a point particle

« A1 = d, : Electron sees the proton as an extended object instead of a point particle.

* A <d, :Electron sees that proton is made up of more fundamental particles.

* A<Kd, :Electron sees gluons and quarks inside the proton.



If proton were a point like particle , the differential scattering cross-section would have been the same as
electron-muon scattering except the fact that muon mass would be replaced by proton mass. Hence,

2 2 / 2

(59),0p = (522)" 0019 = (55g) & cos? - e |
The piece of information unknown to us is how does proton couple with virtual photon. The vertex factor at
the proton-photon vertex is denoted by il"".
Properties that I'V must satisfy :
 Lorentz vector
* Hermiticity
» Gauge invariance /Ward identity




QED Vertex factor at electron-photon vertex (Known) : ig,y*

QED Vertex factor at proton-photon vertex (Unknown!!) : ig,I'*

[F = A, (@2 + Ay (qDph + A3(@D)py + i44(q2)oH pyy + iAs(qD)TH Py - (6)

The coefficients are only function of g2, other scalars constructed at that vertex may be expressed as function
of g% and M?. Note that in Eq. (6) ys term is not considered as parity conservation is enforced.

Consider the term,
J# = U(THu(2) = u(4)|A1(@®v* + A2 (q®)ps + A3(qPpy +iA,(g5)a" pyy +iAs(q*) oV pyy |u(2)
Using Dirac equation (y#p, —m)u = 0 and a(y*p, —m) = 0 and the gauge invariance condition g,J* = 0

gt = pil - pél & Oyy = %(V/ﬂ/v — Vvy/,t)
We get, A, = A; & A, = —As
Hence we obtain ,

u(Dlr*u(2) = u(@[Av* + As(p2 + p)* + 145 (py — D2y JU(2) - (7)



Gordon Identity : u(4)y*u(2) = ﬁﬂ@)[(m +py ) +io" (py — p2)v]u(2) ------- (8)
Using Eq. (8), Eq. (7) becomes,

u(4)rtu(2) = u(4)[Ay#* + 2mAsy# — iAz0" (s — p2)y + 1450 (py — p2)y Ju(2)
= 6(4) |[Fyy* + = B0 (g — py)y | u(2) -wemereeee (9)

Redefining F; = A; + 2mA; and ZF—; = Ag — Aj

For simplicity using Eq. (8), we rewrite Eq. (9) as follows, (Replace m by M)

W(ATHu(2) = 0(4) |[(Fy + FYH = - Fo(py + po)# | u(2) -roeeemeeeees (10)
From Eq. (1), (IMI?) = 3 =L Trlyk (e, +m)y (o3 +m)] X Tr[ (o + ML, (b + M)]
Trly*(p + m)yY (ps + m)] = 4[p{'py + pipy + g (m? —p; -p3)| = LW o (11)

For simplification T* = (F; + F,)y* — ﬁFZ (py + p)* = Ay* + BpH
DefiningA=F,+F, B=F, p=p,+p,



Tr|T, (v, + ML, (ps + M)| =Tr|(Ay, + Bpy) (2 + M)(Ayy + Bp,) (pa + M)| = Hy,
Only traces containing odd number of y matrices will be non-vanishing . On simplification, we get
A2Tr|y, (B2 + M)y (s + M)| + B2p,p, Trl(p2 + M)(py + M)] + ABp, Tr|y, (B2 + M) (P4 + M)| +

ABp,Tr[(p, + M)y, (ps + M)]
= A%Tr|y,(p2 + M)y (s + M)| + B?p,py {Tr[p2p4] + M?Tr[11} + ABp, {MT7|y,p,] + MTr|y,p.}
+ABp AMTT(p,y,] + MTr[y,p4l}

o ATrl|y, (B + M)y, (po + M)| = 442 |p5pY + DhDY + 9" (M? —py - p)| = HE, - (12)
© B2p,pATrlp.ps] + MPTr[1]} = 4B?p,p,[p; - po + M*] = HP, - (13)
* ABp, \MTr|yp,| + MTr|y,ps|} = 4ABMp, (2 + D)y (c1)
* ABpy {MTr|poyy | + MTrlyypul} = 4ABMp, (p2 + pa)y - (c2)
* Hgy= 8ABM(p, + pa)y(p2 + Pa)y (Addin9401 A 4(14)
1 ge . _1lge
(IM|?) =~ Ly, =-9¢ vy

4 (p1 — p3)*



2
LIVHE, = 64(F, + F,)?M?EE" [cos? % — -L_sin?Z | (Using Eq. (11) & (12))
LFYHY, = 4LMVFS (p2 + pa ) u(P2 + Padv[p2 - Pa + M?] (Using Eq. (11) & (13))
L*YHS, = 8LFY(F; + F)FoM(py + pa)y(p2 + Pa)y (Using Eq. (11) & (14))

Elastic Scattering Kinematics :
pr = (E,p1); p2=M,0); p3=(E',p3) & pr+p,=p3+ps &m, =0

do\  _ (_1)° oy __ @ E'[(p2_ 4% 2 20 _ 2 4% . 201
( ) ( ) (IM] >‘4Ezsin4g 2 (F1 L F; )cos ~— (Fy + F;)*“sin 2] (15)

dQ/ 1ab - 8mtM

This is known as Rosenbluth Formula for Elastic e — p scattering process.

« Two form factors F; ,(g*) parametrize our ignorance about the detailed internal substructure of the proton
represented by the blob in the FD of elastic e — p scattering.

» These form factors can be determined experimentally by measuring Z—; as a function of 8 and g*.

- If proton were a point like Dirac fermion then Eq. (15) turns into Eq. (5) with F;(¢%) = 1 and F,(g?) = 0
for all g2.



Instead of the functions F;(g?) and F,(q?) one often introduces the so-called electric and magnetic form factors
denoted by G¢(g?) and GM (g?) in such a way so that no interference term occurs in the cross-section.

Ge(@®) =Ff (@) -7 F3@®) & Gu(g®) = Fi(¢®) + F; (¢7)
Now Eq. (15) becomes

d a2 E' [G2(q?)+1G¥(q? 2 6
(_a) _ ; [ £(@®)+16y(q ) . _|_ 271G (g?) sin _] _________ (16)
dQ/ 1qp 4E2 Sm4—E E 1+7 2
2
Where, the Lorentz invariant quantity, 7 = -~

« The form factors Gz (g?) and G,,(g?) could be interpreted as the Fourier transforms of the charge and
magnetic moment distributions of the proton. Unfortunately, the recoil of proton makes it impossible.

 However, it is possible to show that the form factors Gz(g?) and G,,(q?) are closely related to the proton
charge and the magnetic moment distributions, respectively, in a particular Lorentz frame, called Breit
frame, defined by p, = —p,



Scattering of an electron in a static potential due to an extended charge distribution:
The potential at 7 from the center is given by :

V(@) = fﬁl{(r), d37" with [ p(#)d37 = 1 (Normalization)

Considering 1t order perturbation theory the matrix element is given by :

M = (P [V ;) = j e "IP3TY (7)eP1T 37 Vi),

d37'd37

At|r — 7|

=/
ig-r' Q,O(T) d3,'7.>ld377.’
At|r — 7'

— I )



Where, § = B, —B5. Keeping #' fixed and integrate over d3# with substitution R = # — #'

¢ Q — ] A
— lq-R 3 2N\ L,lq T 4373 — . pd
M;; = j e 4-7'[|I_?>| d°R f p(#)e d37' = (Mfl )pointF(q)

Where F(q) is Fourier transform of p(7"). This resulting matrix element is equivalent to the matrix element
of scattering from a point source multiplied by the form factor : F(q) = [ p(#)e'9"d37

F@»=jmmaﬁuw

S : N o o (G2 >N o iGF 372
If || < 1,wecanwrite F(q) = [(1+iG -7 =) p(P)et T ddF

1,5 -
= 1= 21§52 + - = F(IGI») -

Here, we have assumed p(r) to be spherically symmetric, that is, a function of » = |#| only. The small-angle
scattering therefore just measures the mean square radius (r?) of the charge distribution. This is because in
the small |g| limit the electron has large de’Broglie wavelength and can resolve only the size of the charge

distribution p(r) and is unable to probe the detailed structure.



Rutherford scattering cross-section formula:

<da> B a?
() Rutherford 16E,% sin4%
This formula could have been derived by considering the scattering of a non-relativistic particle (E}, = %mvz)

in the static coulomb potential of the proton V' (#) without any consideration of the interaction due to intrinsic
magnetic moments of electron or proton. Hence, we can conclude that in the non-relativistic limit only the
Interaction between electric charge of the particles matters.

In Rutherford scattering we consider the limit where the target recoil is neglected and the scattered particle is
non-relativistic.

Mott scattering cross-section formula:

When we consider the recoil of the target to be neglected and the scattered particle is relativistic (i.e., the mass
of electron being neglected), the scattering is called Mott scattering. (E = E} for E > m)

<da> a? , 0
— = cos” =
A/ vore  4E? sin® % 2




do a? 0 R
(d—ﬂ> = QCOSZEIF(IqIZ)IZ
Mott 4EZ sin47

There is nothing new in form factors — similar to diffraction of plane waves in optics. The finite size of
scattering center introduces a phase difference between plane waves scattered from different points in space.
If the wavelength is long copared to size of all waves in phase and F(|G|?)=1

NOTE that for point like charge the form factor is unity:.
Point like Electron-Proton Scattering:

(Z—g) = ( @’ ) EE,[COSZ g— zq—ﬂ:zsinzg] (From eq. (5))

lab 4E?2 sin4g

q®> = —4EE’ sinzg . Note that g% < 0 i.e., Space like.

2

Show that E — E' = — L
2M

Since g2 < 0; therefore, E — E' > 0 that is the scattered electron is always lower in energy than the incoming
electron.



(da) a’ E’[ , 0 q 20]
— = cos? = — ——sin®
sl lab AE? sin4g E 2 M 2

2

How do we interpret the equation?

. . do a? (2] . . . .
Compare with the Mott equation ; [ — = cos? = : It is equivalent to scattering of spin %
P q (dﬂ)Mott AE2 sin“'g 2 g J P ‘

electron in a fixed electrostatic potential.

2

The term ( ) IS due to static charge distribution considering non-relativistic limit.

4E? sin45

!

The term EE IS due to recoil of proton.

The term cos? g is due to relativistic effect of the electron.

2
The term — # sin? g IS magnetic interaction due to the spin-spin interaction.

The above differential cross-section depends on a single parameter. For an electron scattering angle 8, both
g?and the energy of the scattered electron, E’, are fixed by kinematics.



Example:

From elastic scattering kinematics we can obtain the following two relations:
E' M 2 __ 2ME?(1-cos 6)

E___ M @ & ¢*="———"2= - (b)

E M+E(1—cos 0) M+E(1—cos 0)
Let us consider e — p scattering at .4, = 529.5MeV and electrons scattered at an angle 8 = 75
For elastic scattering using Eq. (a) we get E' = 373 MeV and using Eq. (b) we get g? = 294MeV?
Elastic Scattering from a Finite Size Proton:

cos? =+ 2164 (q?) sin? =

do a? E'[GZ(q?) + 1G5 (q?)
b 1+71 2 2

df) l 4E? sin4% E

Unlike our previous discussions of form factors, here the form factors are function of g rather than |g|*and
can not simply be considered in terms of the FT of the charge and magnetic moment distributions.

2 N2 _ 1312 — 95 _ (a2 712 = g2 4’
Butg® = (E-E)*—|q|° =z —1q|* =>—Iq]° = ¢q 1‘(5)

2
For L « 1 we have —|g|? ~ q2 and hence G(q?) ~ G(|dI%)



2
Hence in the limit # <« 1 we can interpret the structure functions in terms of the FT of the charge and
magnetic moment distributions.

G (q?) ~ Gg(lil?) = f p(P)eld 37
G (gD ~ Gu(1d1?) = j u(@)eld 37

Note that in deriving Rosenbluth formula we assumed proton to be spin %2 Dirac particle , i.e., ji = %5?
However, the experimentally measured value of proton magnetic moment is larger than that expected for a
point-like Dirac particle: ji = 2.79%5.

So for proton expect

It should be remembered that the anomalous magnetic moment of the proton is a strong evidence that it is not
a point like particle !!



How do we measure Gz (q?) & Gy (q?)?

do do\ [G;+1Gy 6 0
—] = —+ 217Gy sin® =
(dﬂ)lab (dQ)Ol T+ 05 2T eottmsing

do a’ E' 0
q) = e cos? 5
o 4EZsin% 5

Mott scattering cross-section formula with recoil of proton. It corresponds to scattering from a spin-0 proton.

Where

do
« Atvery low qz: T = - ~ 0 (dﬂ)lab/(da) ~ G]% (CIZ)
0

4M?2 ao
aQ

do
e Athighg?:t>1 - (dﬂ)’“b/(da

d_ﬂ)o

~ (1 + 271 tanzg) Gz (q?)

do
 In general from the intercept and slope of the plot (d“)l“b/ (d(,) VS tanzg one can estimate Gz (g?) &
0

aq

Gy (q?) provided g2 is kept fixed.



® EXAMPLE: e p - ep at E,,,=529.5 MeV

*Electron beam energies chosen to give certain values of q2
*Cross sections measured to 2-3 %

PROTON

eof  q> =293MeV?
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From the plots it is clear that form factors fall rapidly with the increase in g2. For proton to be point like it
would have been unity.

Conclusions:

Proton is not point-like.

2\ —2

P(,2
Good fit to the data shows “dipole form factor ” : G¥ (q?) = G";(;; ) ~ (1 — ﬁ) (in units of GeV?)

r

Taking FT find spatial charge and magnetic moment distribution p(r) = p,e « witha = 0.24 fm

dGE(qZ))
dq? q2=0.

The rms charge radius is found to be 7,.,, = 0.8 fm . Itis obtained from (r?) = 6(

Electron elastic scattering from proton demonstrates that the proton is an extended object wirh rms charge
radius of ~0.8 fm.



 For elastic scattering of relativistic electrons from a point-like Dirac proton:

(da) a’ E’[ ,0 q 29]
— = Cos* = — >——sin®
as lab 4E2 sin4% E 2 2M 2

For elastic scattering of relativistic electrons from an extended proton:

(da> a? E’' [Gé (q®) + 1G4 (q?)
2
ab

d_Ql_ 0 E 1+7

0 6
cos? — + 2tG5(gq?) sin? —]
4E? sin47 2

 Further probing of internal substructure of protons can be done by inelastic scattering of electrons from
protons. That is done by increasing the energy of the incident electrons.



